Macros - Intermediate . Repeat the above steps until all ampersands have been
removed.

Prepared by The above code is processed as follows:

00001- | %let statements create macro variables.

]
00004
00006 | Call on &&dsné&n for staggered resolution:

CORPORATION First pass: receives &&dsn&n
resolves to: && 2 &
International SAS® Training and Consulting g;n_;)sdsn
Destiny Corporation Second pass: receives &dsn5
100 Great Meadow Rd Suite 601 .
Wethersfield, CT 06109-2379 resolves to: surprise
Phone: (860) 721-1684 1-800-7TRAINING Fax: (860) peymupmmmmen
721-9784 Command ===
Ema”: info@desﬁnvcorp'com ; ;::: g??:?éégiﬁgd did | get here;
Web: www.destinycorp.com L g;ﬁémmise;
Copyright 2003 5
Overview 2urprf§:t gadsnan;

All the macro variables we have seen so far have been referenced
using a single ampersand. This is known as direct referencing.
These macros have resolved at 'the first attempt' or have not
resolved at all.

Now, how will &&&dsn&n resolve?

E|Program Editor - m5_3
. Command ===> ~
B Program Editor - m5_1 FEx 00001 Xlet dsn=clinics;
~

Command === 00002 Xlet clinics5=How did | get here;
00001 %let mvar = testl; 00003 %let n=5;)
00002 Xput Smuar; 00004 Xlet dsnS=surprise;
00003 ~ 00005
< > 00006 Xput 2&&dsnin;
00007 v
< >
Line Comment
00001 The %let statement creates the macro 00001- | %let statements create macro variables.
variable mvar with value test1. 00004
00002 The %put statement calls the macro 00006 | Call on &&&dsn&n for staggered resolution:
variable mvar using a single ampersand.
The resolved value is written to the Log. First pass: receives &&&dsn&n
However, various programming issues often require macro resolves to: && = &
variables to be referenced using multiple ampersands. This is &dsn = clinics
known as indirect referencing. This chapter examines how these &n =5

macros are identified and processed.

Multiple Ampersands and Staggered Resolution Second pass: receives &clinics5

Consider the following code. What will &&dsn&n resolve to? resolves to: How did | get
here

B Program Editor - m5_2

Command ===> A =

00001 Zlet dsn=clinics; B Log - (Untitled) EEX

00002 Xlet clinics5=How did | get here: Command ===

00003 %let n=5; _ i %let dsn=clinics:

00004 Xlet dsnS=surprise; 8 %let clinics5=How did | get here:

00005 7put Eadsnn; Po Eot ooes

e ‘pu Snenl: 3 10 %let dsn5=surprise;

> 11

12 “put ag&&dsnan:
How did | get here

< ¥

Multiple ampersands are resolved using the following strategy:

Examples of the form (&&&mvar) are rare whereas the generation
of multiple macro variables using &&root&suffix to give &root1, etc.
are quite common. Any number of ampersands can be used.

. Start at the left-hand side and group ampersands into
two’s.

e Each set of double ampersands (&&) is resolved to a
single ampersand (&& => &)

. Each & followed by a character string is resolved as a
macro variable

e A freestanding string remains unchanged.

As a final example, changing the value of i causes different macro
variables to be referenced. This is used to print different titles.

B Program Editor, - m5_4

Command ===> ~
00001 Xlet titlel=First Title for Saved.demograf;

00002 Xlet title2=Second Title for Saved.demograf;

00003 ¥let title3=Yet Another Title for Saved.demograf:
00004

00005 Xlet i=1;

00006

00007 title "2&title&i™;

00008 proc tabulate data=saved.demograf;

00009 class status gender:

00010 var salary;

00011 table status, gender=salary;

00012 run: o
< >

| Output - (Untitled)

Command ===> ~
First Title for Saved.demograf
gender
F M
salary salary
Sum Sum
status
D 8000.00 20000.00
M 131600.00 118300.00
s 43000.00 17800.00
SEP 18000.00 12000.00
W 30000.00
< > -
Symbol Tables

This module examines the concept of symbol tables in greater
depth. It has already been pointed out that macros live in symbol
tables. It is critical to know which symbol table receives a macro.

Correct use of macro values requires the programmer to know how
to change or avoid changing macro variable values in specific
symbol tables.

This module develops the default rules for placing macro variables
into global and local symbol tables. However, sometimes the default
rules are not what the programmer needs. After examining default
placement rules, this module looks at how to assure that macro
variables are written to the symbol table of the programmer’s
choice.

Symbol Table Rules

At SAS invocation time, the Automatic Symbol Table (AST) is built
containing most of the automatic macro variables.

An executing macro builds a symbol table local to it. This symbol
table is deleted once the macro has ceased execution.

Just like the Data Step, the macro first compiles (when defined) and
then executes (when called).

The %macro statement signals the start of the macro definition.

The macro processor takes all the code that follows until it reaches
the %mend statement, compiling the code and saving it in the Work
library.

The default location for a %macro - %mend bundle is the Sasmacr
catalog in the Work library.

The 'compiled’ form is a mixture of compiled statements and
constant text.

Upon a macro call, the macro processor retrieves the compiled
macro code from the Work library and executes it, placing any
generated code upon the SAS input stack as text.

During macro execution, the macro processor may pause while text
placed upon the input stack is processed. That is to say, once a full
step is placed upon the input stack, there will be a pause while it is

executed.

However, macro execution does one further thing. It creates a
symbol table local to the executing macro for the duration of the
execution of that macro. Once the execution of the macro has
completed, the local symbol table is deleted.

In addition, we now know another way of defining macro variables —
as parameters (either positional or keyword) in the definition of a
macro. The macro variables defined in this way are always and only
placed in the symbol table local to the macro. So, during the macro
execution, there is access to two symbol tables - the local one and
the global one. The local table is always searched before the global
one. We shall return to this subject in the next module.

In this section, we illustrate the rules for the following:

e Writing to the various symbol tables during the execution
of a macro

e Reading from the symbol tables.

There are several factors to keep in mind when working through the
following examples.
These include the following:

How is the macro variable defined?

1. %let statement,
2. parameter,
3. otherwise....

Where is the macro variable defined?

1. Inopen code
2. Within a macro bundle

What is the name of the macro variable?

1. Same as an already-existing macro variable
2. Atotally new name

Example 1

(%] Program Editor - m9_1

Command ===>

00003 ¥macro fiscal;

00004 “let quarter=1;
00005 Yput =xxQquarterxxx;
00006 Xmend fiscal;

EIBIX

00009 “fiscal

00011 Zput *xx@quarterxxx;

Line Comment

00004 The %let statement defines a macro inside a
macro bundle.
00005 The %put statement tests the value of &quarter
inside the macro bundle.
00011 The %put statements tests the value of
&quarter after the macro bundle has finished
executing.

The log is displayed below.

B Log - (Untitled)

55 Ymacro fiscal;

56 %let quarter=1;

57 Aput *xx2quarter*xx;
58 “mend fiscal;

59

60

61 “fiscal

X% | %%%

62

63 Aput ==xlquarterexx;
WARNING: Apparent symbolic reference QUARTER not resolued.
ExxR2quarter*s* v

< ¥

Explanation

When %fiscal executes a symbol table local to the macro fiscal is
established. With the local symbol table in place, the %let statement
does the following:

Checks the most local table for the existence of a macro variable
called quarter.

If a macro variable called quarter is found, its value is overwritten in
that symbol table.

If a macro variable called quarter is not found, the macro processor
checks the next higher table (i.e., here, the global symbol table) for
the existence of a macro variable called quarter.

If a macro variable called quarter is found in the next higher table,
its value is overwritten in that table.

If a macro variable called quarter is not found, the process of
checking the next higher symbol table continues. If a macro
variable called quarter is never found, a macro variable is created
and its value assigned in the most local table (i.e., the first table
searched).

So, in this example the macro called quarter is established in the
table local to fiscal.

The %put statements now read from the tables. During the
execution of %fiscal, the macro processor will do the following:

. Search the local table for the presence of &quarter, find it
and report on the value. The %put statement inside the
macro fiscal will therefore write the value of quarter to the
log.

e When %fiscal completes the local symbol table is deleted.

Therefore quarter no longer exists. An error occurs when
the %put statement outside the macro fiscal attempts to
write a nonexistent macro. .

Before After Execution
Execution

Global Global Symbol Table

During Execution

Global Symbol
Symbol Table Table

Local Symbol Table

FISCAL

Quarter = 1
Example 2
(%] Program Editor - m9_2 Q@E\
Command === ~
00001 %let month=January;
00002

00003 ¥macro fiscal;

00004 Zlet quarter=1;
00005 Yput =xxZquarterxxx;
00006 Sput =xxmonthxxx;
00007 “mend fiscal;

00008

00011
00012 Zput #xxQquarterxsx;
00013 Xput ***&monthxxx;

v

< >
00001 The %let statement defines a macro in
open code.
00004 The %let statement defines a macro inside

a macro bundle.

Two %put statements test the value of
&quarter and &month inside the macro
bundle.

Two %put statements test the value of
&quarter and &month after the macro
bundle has finished executing.

00005, 00006

00012, 00013

Bl Log - (Untitled)
Command ===> ~
86 #fiscal

88 Yput *=xlquartersxx;

WARNING: Apparent symbolic reference QUARTER not resolved.
xxxJquarterxxx

89 Aput ==xgmonthess;

ExxJanuaryxes 3

£ >

Explanation

When the first %let statement executes in open code it writes to the
global symbol table. Therefore, the macro variable month is defined
in the global symbol table with a value of January.

When %fiscal executes another scope is established, which is the
symbol table local to the macro fiscal. With the local symbol table in
place, the second %let statement operates as described previously.

In this example then, the macro variable month is established in the
global symbol table whereas quarter is established in the table local
to fiscal.

The %put statements now read from the tables. During the checks the next higher table(s). Upon finding a macro variable
execution of %fiscal, the macro processor will do the following: month in the global symbol table, the old value (January) is
overwritten with the new value of 1.
. Search the local table for the presence of &month.
Both %put statements report from the global table, the 'inner' one
e Upon failing to find it, macro processor will now search checking the local table first.
the global table, find it, and report the value.

Before Execution During After Execution
e Search the local table for the presence of &quarter, find it Execution
and report on the value. Global Symbol Global Global Symbol
Table Symbol Table
e When %fiscal completes, the local symbol table is Table
deleted, so that the final %put statements have only the Month = January Month = 1 Month = 1
global table left to search. So, &month is found but Local
&quarter is not. Symbol
Table
FISCAL
During After Execution
Before Execution Execution
Global Symbol Table | Global Global Symbol Example 4
Symbol Table
Table [£] Program Editor - m9_4. g@g‘
Month = January Month = Month = January Command ===] &
January gggg; »’.na;rots:::z(reglo::li
(pu region H
Local 000023 Ymend stats;
stbOI gggg; fstats(region=CT)
Table 00006
FISCAL 22221 Aput ®ion; 3
Quarter = < 2
1
Example 3 00001 The keyword parameter defines a macro
associated with the macro bundle.
B Program Editor - m9_3 00002 | The %put statement tests the value of ®ion
[inside the macro bundle.
e G LR CLLATE 00007 | The %put statements tests the value of ®ion
00003 ¥macro fiscal; after the macro bundle has finished executing.

00004 “let month=1;
00005 Aput =xx2monthxxx;
00006 “mend fiscal; Bl Log - (Untitled) Ex

00007 Command ===>
00008 117 ¥macro stats(region=);
00009 “fiscal 118 Sput x==Qregionxwx;
00010 119 ¥mend stats;
00011 Xput ***&monthxxx; 120
nnniz A/ 121 ¥stats(region=CT)
< > XX RCTRE%
122
= 123 Yput ®ion;
Line Comment WARNING: Apparent symbolic reference REGION not resolved.
00001 The %let statement defines a macro in open |%"e9'°" X
code.
00004 The %let statement defines a macro with the

same name inside a macro bundle.

00005 The %put statement tests the value of &month
inside the macro bundle.

00011 The %put statement tests the value of &month
after the macro bundle has finished executing.

B Log - (Untitled)

Command ===> A
3% 3% 3% | % % %

108

109 Yput *xxQmonth*ex;

9% 2% 3 | % % % v
< >
Explanation

The sequence of logic is the same here as for the previous
example:

Macro variable month with value January is written to the global
table.

Upon macro execution, the processor checks the most local
environment for a macro variable called month. Failing to find it, it

Explanation

Macro variables created as parameters are placed only and always
in the table most local to the macro (except for read-write automatic

macros, see example 7).

Before Execution

During Execution After

| Execution
Global Symbol Table | Global Symbol Global
Table Symbol
Table
Local Symbol
Table STATS
Region = CT
Example 5
[£] Program Editor - m9_5 EJ@@
Command ===> &
00001 %let region=CT;
00002

00003 ¥“macro stats(region=);
00004 Zput ==xZregionxxx;
00005 ¥Xmend stats;

00006
00007 Xstats(region=AZ)
00008
00009 Zput *xxQregionxxx;
00010 v
< >
Line Comment
00001 | The %let statement defines a macro in open

code.

00003 | The keyword parameter defines a macro of the
same name associated with the macro bundle.
00004 | The %put statement tests the value of ®ion
inside the macro bundle.

00009 | The %put statement tests the value of ®ion
after the macro bundle has finished executing.

B Log - (Untitled) (=3
Command === ~
130 ¥stats(region=AZ)
XX PZHXE

131

132 Jput ===2region=xx;
XX RCTRE%

< ¥

Explanation

Although the %let statement has already established the macro
variable region in the global environment, the value is not
overwritten by the parameter. Macro variables created as

parameters are placed only and always in the table most local to the

macro (except for read-write automatic macros, see example 7).

This example also illustrates the read sequence: the most local
symbol table is always read first with the global and automatic
tables last.

Before Execution During After
Execution Execution
Global Symbol Global Symbol Global
Table Table Symbol Table
Region = CT Region = CT Region = CT
Local Symbol
Table STATS
Region = AZ

Example 6

Ed Program Editer - m9_6

Command ===> ~
00001 Xlet sysdate9=15apr2003;
00002

00003 Xmacro tests:

00004 %let sysdated=01jan2003;
00005

00006 ¥put &sysdated;

00007

00008 ¥mend testB;

00009

00010 XtestB

00011

00012 *%put &sysdate9:

< >

00001 The %let statement attempts to define a
macro variable using the name of a read-
only automatic macro.

Command ===>

ERROR: Attempt to assign a value to a read-only symbolic variable
(SYSDATEY) .

26 %let sysdate9=15aprz2003;

27

28 Amacro tests;

29 %let sysdated=01jan2003;
30

31 #put &sysdated;

32

33 Ymend test6;

34

35 Lteste

FRROR: Attempt to assign a value te a read-only symbolic variable
(SYSDATEY) .

04MAR2003

36

37 Yput &sysdated;
04MAR2003
< >

Explanation

&sysdate9 is set by the system and is read only. The %let

statement follows the standard write logic and the error message is

given.

NOTE: Do not give your variables the same name as read-only
automatic variables!

Before Execution During After
Execution Execution
Automatic Symbol Automatic Automatic
Table Symbol Table Symbol
Table
Sysdate9 = 04MAR2003 | Sysdate9 = Sysdate9 =
04MAR2003 04MAR2003
Global Symbol Table Global Symbol Global
Table Symbol
Table
Example 7
B3|Program Editor - m9_T Q@E‘
Command ===> ~
00001 Xput &syslast;
00002
00003 “macro testT(syslast=);
00004 “put gsyslast;
00005 “mend testT;
00006
00007 Xtest7(syslast=whatever)
00008
00009 Xput &syslast; v
>

Line Comment
00001 | The %put statement tests the value of &syslast, a
read-write automatic macro variable, before the
bundle executes.
00003 | The keyword parameter defines a macro with the
same name as the automatic macro.
00004 | The %put statement tests the value of &syslast
inside the macro bundle.
00009 | The %put statement tests the value of &syslast
after the macro bundle has finished executing.

B Log - (Untitled)

213 Xput &syslast;
WORK .DEMOGRAF

214

215 ¥macro test7(syslast=);
216 fput &syslast;
217 ¥mend testT:

218

219 stestT(syslast=whatever)
WORK .whatever

221 ¥put &syslast;
WORK .whatever

Explanation

&syslast is set by the system but is a read-write macro variable. The
parameter to the bundle has the same name. The read sequence is
the same as that discussed: the most local table is read first with
the global and automatic tables read last. The difference in this
example is that the value of the automatic variable is overwritten.

Before Execution During After Execution
Execution

Automatic Symbol Automatic Automatic

Table Symbol Table | Symbol Table

Syslast = Syslast = Syslast =

work.demograf work.whatever | work.whatever

Global Symbol Table | Global Global Symbol
Symbol Table | Table

Nested Macros

A nested macro refers to a macro invoked within another macro.
Nested macros allow increased flexibility and control over program
flow.

There are two basic structures for creating nested macros. In the
first technique, one macro is completely defined within a second
macro.

Ed Program Editor - m10_1

Command ===> 2
00001 ¥macro both(ds,by,out);
00002

00003 ¥macro sortitidset . byl,out):

00004 proc sort data=saved.&dset out=work.out;
00005 by &byl;

00006 run;

00007 Xmend sortit;

00008

00009 ¥sortit(&ds,&by,%out)

00010

00011

00012 ¥macro printit(dset,by);

00013 title "Header Information for Data Set Work.Zout™:
00014 proc contents data=work.Zout;

00015 run;

00016 title "Data Set Work.fZout Sorted By &by™;
00017 proc print data=work.2out;

00018 run;

00019 title:

00020 ¥mend printit;

00021

00022 ¥printit(&ds,&by)

00023

00024

00025 Ymend both;

00026

00027 Xboth({demograf ,gender ,demograf)

< >

Such a structure will work, but is inefficient. The inner macros are
stored as text instead of being compiled. Each time the outer macro
executes the inner macros are compiled.

A more efficient technique is to define each macro separately and
then invoke the compiled macros:

Ed Program Editor - m10_2

Command === -~
00001 ¥macro sortit(dset,byl,out);

00002 proc sort data=saved.&dset out=work.&out:

00003 by gbyi:

00004 run;

00005 Ymend sortit;

00006

00007 ¥macro printit{dset,by);

00003 title "Header Information for Data Set Work.2out™;
00009 proc contents data=work.out:

00010 run;

00011 title "Data Set Work.2out Sorted By &by™;

00012 proc print data=work.&out;
00013 run;

00014 title;

00015 ¥mend printit:

00016

00017 ¥macro both(ds,by,out);

00018 “sortit(&ds,&by ,2out)
00019 “printit(&ds,.&by)

00020 ¥mend both;

00022 ¥both(demograf ,gender ,demograf) v

Because all the macros are defined separately, they all compile.
Here are the referencing environments:

When the outer macro, both, is executing, the referencing
environment is:

e The symbol table local to both plus the global table.

When the middle macro, sortit, is executing, the referencing
environment is:

e The symbol table local to sortit, the symbol table local to
both, plus the global table.

When the inner macro, printit, is executing, the referencing
environment is:

e The symbol table local to printit, the symbol table local to
sortit, the symbol table local to both, plus the global table.

Note that as a macro's execution terminates, the symbol tables are
deleted and the referencing environment is reduced again.

Controlling the Placement of Macro Variables

So far, we have seen default rules for placement of macro variables
into symbol tables. These rules help the programmer determine the
value passed to the program. Often the default rules permit efficient
coding possibilities.

In contrast, there are times when the default rules for placement will
work against the goals of the programmer.

A macro variable might go global and replace a value needed for
reference in later portions of the program.

Conversely, the programmer might wish to confine a macro variable
to a local symbol table. This strategy would help minimize the size
of the global table over the course of the SAS session. Local tables
are destroyed after the macro finishes executing.

Restricting as many macro variables to the local tables as possible
helps increase efficiency in the SAS session.

This section examines situations where the default rules for
placement of macro variables are at odds with programming goals.

The programmer seeks to keep a macro variable in the local table
where otherwise it would go to the global table. The reverse case
can also be true: the macro variable should be written to the global
table but would be written locally by default.

Directing a Macro Variable to the Global Table

Sometimes a variable will be made local when the programmer
seeks to place it in the GST. To allow its value to be used in another
step, consider the following code:

ﬂng.amE
Comnan => =
00001 /mal:ru subset; |
00002 %let status=M;

00003 data status;

00004 set saved.demogius (where=(status="gstatus”));

00005 ru

00006 Zmend s\.ll:setY

00007 —
00008 %macro_printit;

00009 title “Subset of Demogius where Status = &status..”;

00010

00011 proc print data=gstatus (where=(status="gfstatus”));

00012 run;

00013 Zmend printit;

00014

00015 %subset

00016 %printit

00017

4 | H 4

00002

By default, the %let statement assigns the macro
variable status to the most local table. The macro
variable is unavailable during the execution of
Y%printit.

The Log window shows the reason the program fails to print and
create the correct title.

NOTE: There were 62 observations read from the dataset SAVED.DEMOGIUS.
WHERE status=’M

NOTE: The data set WORK. M has B2 obseruations and 18 varisbles.

NOTE: DATA statement used
real time "1.43 seconds

UARNING: Apparent symbolic reference STATUS not resolued.

131 Zprintit

NOTE: ‘Line generated by the invoked macre "PRINTIT”

121 proc print datazgstatus

22
76

1211 (where=(status="&status”)); rui

UARNING: Apparent symbolic Foforence STATUS not resolved.

WARNING: Apparent symbolic reference STATUS not resolved.

ERROR 22-322: Expecting a name.
ERROR 76-322: Syntax error, statement will be ignored.
NOTE: Tho SAS system stopped processing this step because of errors.
ROrE JEROCEOUREIERIN LSS
real ti 0.49 seconds

gl | 7

How might this programming objective be realized?

I [=1 3

00001 %global status;

00003 %macro subset;

00004 %let status=S;

00005 data &status;

00006 set saved.demogius (where=(status="gstatus”));
00008 %nand subset;

00010 “macro printit;

00011 title "Subset of Demogius where Status = &status.
00013 proc print data=gstatus (where=(status="%status™”));
00014 run

00015 #mend printit;

00017 Zsubset
00018 %printit

00020 %put _global_;

00022 title;

00023 N
4 | H 4

00001 | The %global statement directs the creation of a
macro variable (in this case status) in the global
table. The value of the variable is null.

The %let statement inside %subset follows the
default rules. The GST receives the value for
status, just as the programmer had intended.

00004

Directing a Macro Variable to the Local Table

The programmer may also want a macro variable to be written to
the local symbol table.

This step would assure that a value in the global symbol table would
not be overwritten.

Also, the global table would not become cluttered with macro
variables used on a one-time basis.

] Program HEEE
Command =
00001 %let gender=F; 1
00002 Zput 1¥**%gendersxs;

00003

00004 %macro genderM;

00005 %put 2***%gendersEx;

00006 %let gender=H;

00007 proc means data=saved.demogius mean;

00008 var salary;

00008 where gender = "Sgender”;

00010 %put 3xxxBgender xk;

00011 run;

00012 %mend genderM;

00013

00014 Xput 4xxxkgendersss; =
00015

00016 %macro genderF;

00017 Zput SExxggenderExk;

00018 proc means data=saved.demogius mean;

00018 var salary;

00020 where gender = “%gender”;

00021 Zput BExxSgendersxk;

00022 run;

00023 %mend genderF;

00024

00025 %put Tr**sgendersxs;

00025

00027 xgendert

00028 Xput Br¥*kgenderssk;

00023

00030 xgenderf

00031 %put Gx**tgendersxs;

00032 B

<« | >

00001 The %let statement in open code creates the
macro variable gender in the GST with value F.
The %let statement replaces the GST value of
gender with M. This value is what the programmer
wanted for the %genderM macro bundle.

The &gender resolves to M, not F as the
programmer had wanted.

00006

00020

Bl Log - (Untitled)

©
o
3

133 Zput |%xeBoenderkEN;
1RREFRER
134

135 %macro genderM;
136 Zput 2x¥x&gendersxx;
137 Zlet gender=M;

138 proc mesns dats=saved.demogius mean;
139 var salary

140 uhers gender = sgender™

141 #put 3sxxigendersas;

143 zmend gendert;

Y
148 put dkxbgendertar;

HEXXFEE

46

147 %macro genderF;

148 %put SExxigenderzxs;

149 proc mesns dats=saved.demogius mean;

150 var salary L
151 uhere gendtr = “Sgender”

152 #put Grrxagendersar;

53
159 zmend genderr ;
55

156 Zput TexsZgendersxx;
7***}7***

152 #genderh
2rxaFERR

BxxxHERE
< | 2/

Bl Log - (Untitied) HE
NOTE: There uere 64 observations read from the dataset SRUED.DEMOGIUS. B
WHERE gender='H’;
NOTE: PROCEDURE MEANS Used:
i 1.98 seconds

159 %put B#xgendersss;
BEEEMEXE
1

80
161 ZgenderF
SEEEMEXX
GEEEMEXX

NOTE: There were B4 observations read from the dataset SAUED.DEMDGIUS.
WHERE genders='M”;

NOTE: PROCEDURE MEANS used:
real time 0.05 seconds

162 ¥put 9xxxtgendersss;
GxxxMExx

Bl | > [/)

The default rules have worked against the goals of the program.

The global macro variable gender was given a new value. To

assure that the value of a macro variable is written to the local table,

include syntax as shown.

I Program Editor - (Untitled) I [=]
Command ===>]
00001 %let gender=F;

00002 Xput 1*xxkgendersss;

00003

00004 %macro genderM;

00005 %put 2xx*Rgenderssx;

00006 %local gender;

00007 %let gendersH;

00008 proc means data=saved.demogius mean;
00009 var =alary;

00010 where gender = "&gender”;

00011 “put 3xxkBgender¥xk;

00012 run; o
00013 %mend genderh;

00014

00015 %put Yxx*g2gEnderxsx;

00016

00017 %macro genderF;

00018 %put SEx¥ggendersxs;

00019 proc means data=gsaved.demogius mean;
00020 var salary;

00021 where gender = “&gender”;

00022 %put BEEx&gENndersx¥;

00023 run;

00024 %mend genderF;

00025

00026 Xput Trx*kgenders#s;
00027

00028 xgendert

00029 %put Brx*lgendersEk;
00030

00031 XgenderF

00032 %put Ixx*kgendersEx;
00033

4 | H 4

00006 | The %local statement creates a macro variable
gender in the symbol table local to %genderM.
The value of gender is null.

00007 | The default placement rules write the value to the
local symbol table. The macro variable gender in
the GST remains F.

Overview

This module looks at how the Data Step can create macro
variables, often out of a data set variable. The Call Symput routine
is used to create a macro variable from within the data step.

In addition, this module looks at the Symget function for bringing a
macro variable into the Data Step.

Call Symput Routine

Of all the macro syntax options, Call Symput is one of the most

important and most useful. With Call Symput, we have another way

of creating a macro variable and giving it a value, this time during
data step execution.

The syntax for call symput is:
Call symput (macro variable name, macro value);
Note:
. Call Symput is used exclusively in the Data Step.

. Call symput works at data step execution time (not
compile time).

e The macro variable is not available until the data step
creating it completes execution (i.e., until after the run
statement).

Another issue to be aware is if the arguments are in quotes or not.
Briefly, any argument enclosed in quotes is taken as the literal
name or value. Any argument not in quotes is treated as a variable
and the argument is the value of that variable.

Several examples follow illustrating this last point.

Example 1

Command
00001 data _null_;

00002 call symput(’newmacro’,’hello”);

00003 run;

00004

00005 %Zput E¥*2newmacroxxs;
00006

4| o

00002 | Both arguments are in quotes. Argument one
creates a macro variable newmacro with the value
hello.

Example 2

o003 call symput(x, greetings’);
ooood rFun;

00006 Xput **XRMUSKEX;
07

00003 | First argument unquoted and second argument
quoted. Argument one references the data set
variable ‘x’, which has the value of ‘mvar’.
Argument one creates a macro variable mvar with
the value greetings.

Example 3 is determined by the value in the status variable.
The macro value is determined by the value in the
o BEIE count variable.

00001 da1a _m.lll i
00002 mvar’;

00004 ﬁa.. AR Analyze the following additional programs to see the power of the

00005 run

00008 Call Symput routine.

00007 Xput EXEBmuarkss;
08

Example 1:

Create output as shown. It requires both a string and numeric value
reflecting the average salary of the data set.

00004 | Neither argument is in quotes. Arguments one
and two reference data set variables X’ and ‘y’
respectively. Both data set variables have values.
Argument one creates a macro variable mvar with
the value Monday.

Format the string to use in a title statement.

Use the numeric value in a Where statement to subset the top half
earners into a new data set.

Example 4
(-[O[x]
B3 Program Editor - [Untitled) 8 [=1 B > a
Command ===> N 00001 proc means data=saved.demogius mean noprint;
00001 data _null_; 00002 var salary;
00002 y = “Monday”; 00003 output out=work.summary (keep=meansal) mean=meansal;
00003 call symput(”x”,y); 00004 run;
00004 run; 00005
00005 00006 data _null_;
00006 Xput E¥F2XEFE; 00007 set work. SUNMArY 5
00007 = 00008 call symput(’meansal’,.meansal);
] S 00003 call symput(avgsal’ .put(meansal,dollari0.2)); I
oaott
00012 title "Average Salary is &augsal
00013 titlez ’Subset of Population mlth grEatEr than average income.’;
00014
- — 00015 data work.tophalf;
00003 | Only the first argument is in quotes. Argument two T e e O et
references a data set variable ‘y’ with value daats UM
‘Monday’. Argument one creates a macro variable 00081 Cal nome atarine saiore:
y . 000Z2E format salary dollariz.g;
x’ with the value Monday. 00023 run;
00024 -
4 | 2/
These are the four variations in the Call Symput routine.
Line Comment
Now note the timing of creating the macro variable with Call 00001-00004 | Proc Means is used to calculate the
Symput. mean of the variable salary. An output
data set is created (work.summary) with
a variable (meansal) that is the mean of
sy) : salary.
Sait Teimeninane; o1 00006-00010 | The data step is used to read in the data
run;
00005 set created by Proc Means. Call symput
00007 Zput Zx#x&monthx*%; . .
e : o is used to create macro variables
meansal and avgsal.
Line Comment 00012 Macro variable avgsal is used in Title
00004 | The %put inside the Data Step will not resolve statement. i i
since the macro variable has not been created. 00016 M:C"O vlanabk: meznsztalc;stused in
00007 | The %put after the Data Step will resolve. where clause 1o subset data.
. R B Output (Untitled) =]
Using the Call Symput Routine Do 14 0 W17 oréater than sverage Incoms. -
.)) . . . Obs NAME STAFFNO SALARY
Application of the Call Symput routine displays its programming I Jutia Pendiebury OET TOTION
2 Helen cinderford, 0094 SE5,200.00
power. 3 Mark Chapel 0019 $30,360.00
Y Julio Jennings 0084 SE25,700.00
5 David Dulley 0066 $29,700.00
. s . . 6 Dawn Duvet 0085 $28,975.00
To illustrate, let's create macro variables and values for frequencies I CAL L ones SR =
of distinct values in a data set. 19 Aven Festirtnuaite besa 533752000
11 Celia Freebody 0055 SE23,023.00
12 Agnes Fortesque-Smyt 0051 S25,410.00
13 Susan McGrath 0017 $53,970.00
B3 Program E 1 David €. Andersen 0079 $22,950.00
Command 15 Elaine M. Allen 0060 BE26,050.00
00001 proc freq data=saved.demogius order=freq; 16 Carl M. Fischer 0031 $47,520.00
00002 table status / noprint out=work. stats 17 Deborah Rando|ph 0077 SE27,950.00
00003 (where=(status nhe ”) 18 Lois Barr 0065 $35,650.00
00004 keep=status count); 19 Mark Mancini 00101 $E£9,200.00
00005 run; 20 Pamela Miant 0090 $£9,650.00 N
00006 Lo 4] W
00007 proc print dataswork.stats; run;
00008
00009 data _null_
00010 set I-lul"k stats;
00011 call symput(status, count);
00012 run;
00013
00014 %put Exx&mxxs;
00015 Xput =Ex#Sdexx;
00016 “put ¥X¥s*x%;
00017 Xput EFFJPEEE;
00018 Xput E¥FJWEFE;
00019 =
4

00011 Each loop of the incoming SAS data set
work.stats creates a new macro. The macro name

Example 2: more than 30 days old.

00018- Use data set option NOBS to create
Create macro variables to show average age by gender values. 00022 variable NUMOBS. The value of NUMOBS
Show one average age for males, another for females. is the number of observations in data set

work.oldrecs. Call symput is used to

it e create a macro variable (append) with the
TR St AP ot number of observations in the data set
EEEEE G work.oldrecs.
eaosENeroe "==QS_°=*==WK-==M9NS pesalies ety | 00024- Macro bundle archive is created. If the
T 00030 value of the append macro is not zero
o001t ey MGl AL (therefore there are observations in the
00012 run;
oo1s work.oldrecs data set) the Proc Append
00018 set uork.agestats; . code is generated and executed.
ymput(gender, left(mean)); . .
R ALK Otherwise the Proc Append code is not
00020 ot EEEERERE] generated and executed.
00021 =
4 | L7
Example 4:
Line Comment o)))
00001-00003 | The data set saved.demogius is sorted by Subset a data set so that each distinct value of a variable is written
gender. to a new data set bearing the value name.
00006-00012 | Proc Means calculates the mean age for ————EEEE——,
. B3 Program Editor - (Untitled) [-10[x]
each gender. An output data set is created Command ===>) =
k tats) with two observations; the Buguz **ere "I (inputas, Byver, prerix):
(.\NOI' '_ages a ’ 00003 %% Create a |ist of distinct values of the byvar;
first with the mean age for Females and 00003 © "Tokio sbyonr PRerint outsuork.nunbys (Keepsabyvar);
the second with the mean age for Males. taaas U)) _
00014- The data step reads in the data set 20013 Gata hui 1~ - e eriaien mn mount watuess
00017 containing the mean age values. Call EooilIR sl svwvu*(IMg:(PLL;;;;ggg'g N2 -
symput is used to create a macro variable. I L e e
The name of the macro variable is given by 80018 5 Use tho Dats Step to name new data sets and subseot;
the value of the gender variable. The 00018 ™ g0 i=1 xta snumabe;
.) " 00018 spref ixssmuargi
value of the macro variable is given by the ey #end;
value of the variable mean. Because there e 5?;,‘*;',‘;::“5!
are two observations in work.agestats, two 000sn 5lize' 1 Supuerobenvarsi then autput &pref ixbmvarki;
macro variables are created, one for 00067 yena; "ot SleeTeles:
’ v00es runio
Females and the second for Males. 000z i
- - / plit;
00019- %put is used to write the value of the e e e (T e
00020 macro variables to the Log A : o
Bl Log - (Untitled) Line Comment
Command ===3> A~ e
5o 00004-00006 Use Proc Freq to create a data set
61 “put &T ini i i
T - containing all unique values of variable
B2 Aput ExxBmEx¥;
*%%38 .?BIZE EXLE) defined by &.byvar. .
> 00009-00014 | Create a series of macro variables called
< 2 mvar1, mvar2, etc. The values of these
macros are given by the value of the
Example 3: macro &byvar. The macro variable
Numobs that is created has a value equal
The idea is to archive observations more than 30 days old. This to the number of unique values of &byvar.
example could be adapted to any dynamic file (say one under 00017- Use a %do loop to create the data set
FSEDIT control) where it was important to move old observations 00021 names in the data statement.
into some archive or backup file. 00023 Create macro variable else and set its
value to null
o A S L] E 00024- Use a %do loop to generate a series of if,
00001 dat K. H .
2a00z bt ETEES;EMQ‘ aates. 00028 else if statements. Based on the value of
OO lines, FoIN9ES &byvar the observation is written to the
2007 1zupizoe 98 a3 appropriate data set.
00008 05may1997 120 34
00015 i1meyisss 13 o7
00011 run; Example 5:
00015 dats work.oldrecs:
00014 set work.neuw = 5
HEE g SRR S EURS S B0 L S LU T Let us assume that the programmer wants a title statement to spell
00018 data _null out the results determined from data set summarization.
00018 set murk oldrecs nubs-numu EH
00020 l:all symput(append’ .|ef1(numuns)],
00021 op; . . .
gooee run?’ For example, if there are more males in the population than
R e e e #then o i females, the title should read, “Males outnumber Females”. If the
C00gs Fun; °PPend Pesesssved.arch dstasuork.oldrecs; reverse is true, the title should read, “Females outnumber Males”.
00028 Xend; . .
op0zs 5§Zﬁ§ %put Mo archiving required; How can the programmer tell SAS which title to select?
00032 Zarchive;
00033 =
4] | AV
Line Comment
00001-00011 Create original data set.
00013-00016 | Create work.oldrecs with observations

00005 Xmend males;
000086

<

00001 %macro males;
00002 title ’Males outnumber Females’;
00003 titlez "&m to &T";

00004 %let order = descending;

00007 ¥macro Temales;

00008 title ‘Females outhumber Males’;

00009 titlez “&f to &m”;

00010 “4let order =;

00011 ¥mend females;

00012

00013 Zmacro size;

00014 “global order;

00015 options nodate nonumber;

000186 title;

00017

00018 data _null_;

00019 set saved.demogius (keep = gender

00020 where =(gender ne > 7))
00021 end=end;

oooz2 retain f m ;

00023 ifT gender = “F” then f+1;

00024 else m+1;

00025

00026 if end then do;

00027 call symput(gender, compress(put(f, 3.)));
00028 call symput(gender, compress(put(m, 3.)));
00029 end;

00030 run;

(] Program Editor - m12_11
Command ===>

0go42

00043 *mend size;
0004

00045 Xsize

<

00032 “iT &m gt &F Xthen Xmales;
00033 #else Zfemales;

00034

00035 proc sort data=saved.demogius
00036 out=work.demogius;
00037 by &order gender;

00038 run;

00039

00040 proc print datazwork.demogius;
00041 run;

Line
00001-00005

Comment

The %macro - %mend bundle males
supplies the title to use if males outnumber
females. If so, the data set is sorted in
descending order to show the males at the
top. The second title statement will show
the actual values (derived below).

00007-00011

The %macro - %mend bundle females
supplies the title to use if females
outnumber males. If so, the data set is
sorted in ascending order to show the
females at the top. The second title
statement will show the actual values
(derived below).

00014 The %global statement creates a slot for
the order macro. The value is supplied
when the macro %male or %female is
invoked conditionally below.

00016 Because titles are used, all previously

existing titles are removed.

00022-00025

The sum statements F+1 and M+1 count
the number of observations read into the
Data Step.

00027-00029

The Call Symput routines create macro
variables F and M at then end of the data
step execution.

00033-00035

The %if...%then condition invokes either
%males or %females based on values of
the macro variables. At this point the title
statements are ready and the Global
Symbol Table holds a value of either
descending or <null> for the macro
variable order.

00039

The order macro variable resolves from the
Global Symbol Table.

Frequently Asked Questions About Call Symput

(a) To which symbol table does the macro variable belong?

Most macro variables created by the use of the Call Symput routine
are placed in the global table. However, the variable will be placed
in the nearest symbol table in the current referencing environment
of the data step, providing that symbol table is not empty. If it is
empty, it will be placed in the next higher symbol table, providing it
is not empty and so on.

(b) When is the macro variable available for use?

The most common mistake with the use of the Call Symput routine
is to forget that the macro variable is only available after the data
step completes execution!

(c) How does the Call Symput format character values?

The default format is $w. where w is the width of the variable.
Hence trailing blanks may also be transferred. Avoid this by the use
of the trim function with the second argument:

call symput('mvar1’, trim(datavar));

(d) How does Call SYMPUT format numeric values?

The default format is BEST12. with the number being right justified.
You may need to use the left and put functions to get your desired
result:

call symput('mvar1’, left(put(datavar, 3.));
Symget Function
The purpose of the Symget function is to pass values from a symbol

table in the current referencing environment to the data step
variable in the program data vector:

Symbol Table
mvar1 Value1
mvar2 Value2
Program Data Vector
VarA VarB VarC VarD VarE

Value2

Note several important features about the Symget function:
. It is used exclusively in the data step.
e It works at data step execution time (not compile time).
. Symget always retrieves a character variable.

e The data step variable created by symget is a character
string with a default length of 200.

The syntax for the symget function is;
Variable=symget(argument);

Three types of arguments are accepted by symget:
. Name of a macro variable in single quotes.

. A data step character variable whose value is the name
of a macro variable.

e Adata step character expression.

Use of the Symget function is quite versatile.

The most common use of the Symget function is to make dynamic
EA Program Editor - m12.12 changes to the macro variable name.

00003 ?Iet u;ilue:[']; "
gggg; s ERttle St B Program Editor - m12_15
00006 data wcrk.dﬁmggius; - i (i " Command ===3 ~
00007 set saue ._emcgius (where= status:gynget ‘value’) 00001 ¥let muarl = first;
ggggg run;f gender = symget(‘value®) then title = symget(’'title’); 00002 %let muar2 = second;
00010 00003 Xlet muar3 = third;
00011 proc print data:work.dgmogius; 00004
I o o gender title: 00005 data work.newds;
. o 00006 do 1 = 1 to 3
00007 datavar = symget('mvar’||put(i,1.));
00008 output:
00003 end;
00007 The Symget function used in a ggg :? funl;
where option 00012 proc print data=work.newds;
00008 The Symget function used in a 00013 run; v
conditional assignment _ _
In contrast, consider the following attempt to use the Symget
function. 00001- The three %let statement created sequentially
00003 named macro variables.
Warning: This program contains syntax errors! 00006- The do...to; end; syntax provides the
00009 numbered portion of the macro variable
B Program Editor - (Untitled) [—[olx] names.
CDMMBI’\ =
0001 /Iat value=M;
00002 %let title=Hr.; .) . .
o00a data symoet(*ualue’); | The distinction between the two syntax options of the Symget
EEEEE Tt gander o opaeet(runtun’) than 1iTe s aynger Tty function is in the use of quotes!
00008 i
00009 t dat t(1)
20010 ""”E;E:é?;::iéa;ﬁgf:;é;‘(u"’v;‘?ue N Placing the first argument in quotes indicates a literal; the string
29912 rum; 5 inside the quotes is the macro variable name.
< | L7
. When the first argument is not in quotes, it indicates a data set
Line | variable; the value of the data set variable supplies the name of the
00004 The Symget function is incorrectly used to macro variable.
name the data set (which is done at compile
time). _ i Creation of Numeric Variables
00009, The Symget function incorrectly used outside
00011 the Data Step. Another point to note is that the Symget function creates a macro
that is a character string. What are the implications of this?
The Log window shows several problems.
Consider the following syntax that appears to be quite similar. The
[[=] ES

E syntax uses the Input function to convert a character variable to a
numeric variable.

22
ERROR 22-7: Invalid option name "value’.

232 sot saved.genogius (uharex(ststuszeyngot(uaiue:)));
233 if gender = symget(’value’) then title = symget(’title’) ; Command -
EE 00001 s##ss Genoral Use of the Input Function sssss/ Il
NOTE: The ss syston stopped processing this step because of errors. 00002 dats changes
NOTE: DATA statement used 00003 mput a S
.52 seconds 00004 z = imput(a,7.);
00005 datalines;
235 00006 7211684
236 proc print datazsymget(’value’); 00007 5821
------- 00008 7
ERROR: il UORKsyNOET. oaTA” dues not exist. o993 rums
ERROR 22-7: Invaiid option name
2 v r status geﬁuer title; 00011 proc contents datazchanges; run;
ere status = symget(" D5 00012 proc print data=changes; run;
MRRNING Nn datasets qualify Y‘nl" MNERE processing. 00013
- 00014 -
NOTE: The SAS System stopped processing this step because of errors. 00015 /#x2x% Input Function uith Symget #xxxx/
NOTE: PROCEDURE PRINT used: 00016
real time 0.33 seconds 00017 %let scale = 20;
o . 00018
il - - > 4 00019 daTa Just fy;)
00020 = input(sscale,z.)
How might the problem in the above syntax be solved? G002 A= o= i Bt Spnget i’ EHRES
00022 cost3 = Input[El) 2.
00023 costd = input(’20’ z)
00024 run;
00025
_ 00026 proc contents data=justify; run;
00001 %let valuesH;
K B et 00027 proc print data=justify; run;
000 nnnpa H
00004 data &value; 4? Mo
00005 set saved.demogius (uheres(status=symget(’ualue’ =
00006 if gender = symget(’'value’) then title = symget(’ 1|t|= 1
00007 run;
00008
00003 proc print data=svalue;
00010 var status gender title;
00011 where status = “&value™;
00012 run;
00013
00014 -
4| > 4

00004, 00009, | Unlike the Symget function, invoking a

00011 macro variable value using &value does
not depend on the Data Step nor on
execute time.

Dynamic Change to the Macro Variable Name

Comment

00020- The derived variables cost1 to cost4 seem to

00023 follow the same syntax. They do not. Explore
the differences in the Input statements
below.

Why these differences in results?

Remember that the Input function uses a character value as the first
argument. Both Symget and ‘20’ provide the correct variable type,
and thus the correct justification (to the left). These two examples
work as predicted.

In contrast, &scale and 20 are numeric values. The Log window
states that numeric values have been converted to character.
However, the automatic conversion used the Best12. format. As a
result, the numbers were converted to strings as “ 20”. What
part of the string contributed to the values of cost1 and cost3?
Answer: the first two (blank) spaces. As a result, the values for
cost1 and cost3 are missing.

Remember the result from the Symget function is a character string
of default length 200. It will be left justified and therefore works as a
literal string.

