

Macros - Intermediate

Prepared by

International SAS® Training and Consulting

Destiny Corporation
100 Great Meadow Rd Suite 601

Wethersfield, CT 06109-2379
Phone: (860) 721-1684 1-800-7TRAINING Fax: (860)

721-9784
Email: info@destinycorp.com
Web: www.destinycorp.com

Copyright 2003
Overview

All the macro variables we have seen so far have been referenced
using a single ampersand. This is known as direct referencing.
These macros have resolved at 'the first attempt' or have not
resolved at all.

Line Comment
00001 The %let statement creates the macro

variable mvar with value test1.
00002 The %put statement calls the macro

variable mvar using a single ampersand.
The resolved value is written to the Log.

However, various programming issues often require macro
variables to be referenced using multiple ampersands. This is
known as indirect referencing. This chapter examines how these
macros are identified and processed.

Multiple Ampersands and Staggered Resolution

Consider the following code. What will &&dsn&n resolve to?

Multiple ampersands are resolved using the following strategy:

• Start at the left-hand side and group ampersands into
two’s.

• Each set of double ampersands (&&) is resolved to a
single ampersand (&& => &)

• Each & followed by a character string is resolved as a
macro variable

• A freestanding string remains unchanged.

• Repeat the above steps until all ampersands have been
removed.

The above code is processed as follows:

Line Comment
00001-
00004

%let statements create macro variables.

00006 Call on &&dsn&n for staggered resolution:

 First pass: receives &&dsn&n

 resolves to: && &
 dsn dsn
 &n 5

 Second pass: receives &dsn5

 resolves to: surprise

Now, how will &&&dsn&n resolve?

00001-
00004

%let statements create macro variables.

00006 Call on &&&dsn&n for staggered resolution:

 First pass: receives &&&dsn&n

 resolves to: && &
 &dsn clinics
 &n 5

 Second pass: receives &clinics5

 resolves to: How did I get
here

Examples of the form (&&&mvar) are rare whereas the generation
of multiple macro variables using &&root&suffix to give &root1, etc.
are quite common. Any number of ampersands can be used.

As a final example, changing the value of i causes different macro
variables to be referenced. This is used to print different titles.

Symbol Tables

This module examines the concept of symbol tables in greater
depth. It has already been pointed out that macros live in symbol
tables. It is critical to know which symbol table receives a macro.

Correct use of macro values requires the programmer to know how
to change or avoid changing macro variable values in specific
symbol tables.

This module develops the default rules for placing macro variables
into global and local symbol tables. However, sometimes the default
rules are not what the programmer needs. After examining default
placement rules, this module looks at how to assure that macro
variables are written to the symbol table of the programmer’s
choice.

Symbol Table Rules

At SAS invocation time, the Automatic Symbol Table (AST) is built
containing most of the automatic macro variables.

An executing macro builds a symbol table local to it. This symbol
table is deleted once the macro has ceased execution.

Just like the Data Step, the macro first compiles (when defined) and
then executes (when called).

The %macro statement signals the start of the macro definition.

The macro processor takes all the code that follows until it reaches
the %mend statement, compiling the code and saving it in the Work
library.

The default location for a %macro - %mend bundle is the Sasmacr
catalog in the Work library.

The 'compiled' form is a mixture of compiled statements and
constant text.

Upon a macro call, the macro processor retrieves the compiled
macro code from the Work library and executes it, placing any
generated code upon the SAS input stack as text.

During macro execution, the macro processor may pause while text
placed upon the input stack is processed. That is to say, once a full
step is placed upon the input stack, there will be a pause while it is
executed.

However, macro execution does one further thing. It creates a
symbol table local to the executing macro for the duration of the
execution of that macro. Once the execution of the macro has
completed, the local symbol table is deleted.

In addition, we now know another way of defining macro variables –
as parameters (either positional or keyword) in the definition of a
macro. The macro variables defined in this way are always and only
placed in the symbol table local to the macro. So, during the macro
execution, there is access to two symbol tables - the local one and
the global one. The local table is always searched before the global
one. We shall return to this subject in the next module.

In this section, we illustrate the rules for the following:

• Writing to the various symbol tables during the execution
of a macro

• Reading from the symbol tables.

There are several factors to keep in mind when working through the
following examples.
These include the following:

How is the macro variable defined?

1. %let statement,
2. parameter,
3. otherwise….

Where is the macro variable defined?

1. In open code
2. Within a macro bundle

What is the name of the macro variable?

1. Same as an already-existing macro variable
2. A totally new name

Example 1

Line Comment
00004 The %let statement defines a macro inside a

macro bundle.
00005 The %put statement tests the value of &quarter

inside the macro bundle.
00011 The %put statements tests the value of

&quarter after the macro bundle has finished
executing.

The log is displayed below.

Explanation

When %fiscal executes a symbol table local to the macro fiscal is
established. With the local symbol table in place, the %let statement
does the following:

Checks the most local table for the existence of a macro variable
called quarter.

If a macro variable called quarter is found, its value is overwritten in
that symbol table.

If a macro variable called quarter is not found, the macro processor
checks the next higher table (i.e., here, the global symbol table) for
the existence of a macro variable called quarter.

If a macro variable called quarter is found in the next higher table,
its value is overwritten in that table.

If a macro variable called quarter is not found, the process of
checking the next higher symbol table continues. If a macro
variable called quarter is never found, a macro variable is created
and its value assigned in the most local table (i.e., the first table
searched).

So, in this example the macro called quarter is established in the
table local to fiscal.

The %put statements now read from the tables. During the
execution of %fiscal, the macro processor will do the following:

• Search the local table for the presence of &quarter, find it
and report on the value. The %put statement inside the
macro fiscal will therefore write the value of quarter to the
log.

• When %fiscal completes the local symbol table is deleted.
Therefore quarter no longer exists. An error occurs when
the %put statement outside the macro fiscal attempts to
write a nonexistent macro. .

Before
Execution

During Execution After Execution

Global
Symbol Table

Global Symbol Table Global Symbol
Table

 Local Symbol Table

FISCAL
 Quarter = 1

Example 2

Line Comment
00001 The %let statement defines a macro in

open code.
00004 The %let statement defines a macro inside

a macro bundle.
00005, 00006 Two %put statements test the value of

&quarter and &month inside the macro
bundle.

00012, 00013 Two %put statements test the value of
&quarter and &month after the macro
bundle has finished executing.

Explanation

When the first %let statement executes in open code it writes to the
global symbol table. Therefore, the macro variable month is defined
in the global symbol table with a value of January.

When %fiscal executes another scope is established, which is the
symbol table local to the macro fiscal. With the local symbol table in
place, the second %let statement operates as described previously.

In this example then, the macro variable month is established in the
global symbol table whereas quarter is established in the table local
to fiscal.

The %put statements now read from the tables. During the
execution of %fiscal, the macro processor will do the following:

• Search the local table for the presence of &month.

• Upon failing to find it, macro processor will now search
the global table, find it, and report the value.

• Search the local table for the presence of &quarter, find it

and report on the value.

• When %fiscal completes, the local symbol table is
deleted, so that the final %put statements have only the
global table left to search. So, &month is found but
&quarter is not.

Before Execution

During
Execution

After Execution

Global Symbol Table Global
Symbol
Table

Global Symbol
Table

Month = January Month =
January

Month = January

 Local
Symbol
Table
FISCAL

 Quarter =
1

Example 3

Line Comment
00001 The %let statement defines a macro in open

code.
00004 The %let statement defines a macro with the

same name inside a macro bundle.
00005 The %put statement tests the value of &month

inside the macro bundle.
00011 The %put statement tests the value of &month

after the macro bundle has finished executing.

Explanation

The sequence of logic is the same here as for the previous
example:

Macro variable month with value January is written to the global
table.

Upon macro execution, the processor checks the most local
environment for a macro variable called month. Failing to find it, it

checks the next higher table(s). Upon finding a macro variable
month in the global symbol table, the old value (January) is
overwritten with the new value of 1.

Both %put statements report from the global table, the 'inner' one
checking the local table first.

Before Execution During
Execution

After Execution

Global Symbol
Table

Global
Symbol
Table

Global Symbol
Table

Month = January Month = 1 Month = 1
 Local

Symbol
Table
FISCAL

Example 4

Line Comment
00001 The keyword parameter defines a macro

associated with the macro bundle.
00002 The %put statement tests the value of ®ion

inside the macro bundle.
00007 The %put statements tests the value of ®ion

after the macro bundle has finished executing.

Explanation

Macro variables created as parameters are placed only and always
in the table most local to the macro (except for read-write automatic
macros, see example 7).

Before Execution During Execution After
Execution

Global Symbol Table Global Symbol
Table

Global
Symbol
Table

 Local Symbol

Table STATS

 Region = CT

Example 5

Line Comment
00001 The %let statement defines a macro in open

code.
00003 The keyword parameter defines a macro of the

same name associated with the macro bundle.
00004 The %put statement tests the value of ®ion

inside the macro bundle.
00009 The %put statement tests the value of ®ion

after the macro bundle has finished executing.

Explanation

Although the %let statement has already established the macro
variable region in the global environment, the value is not
overwritten by the parameter. Macro variables created as
parameters are placed only and always in the table most local to the
macro (except for read-write automatic macros, see example 7).

This example also illustrates the read sequence: the most local
symbol table is always read first with the global and automatic
tables last.

Before Execution During
Execution

After
Execution

Global Symbol
Table

Global Symbol
Table

Global
Symbol Table

Region = CT Region = CT Region = CT
 Local Symbol

Table STATS

 Region = AZ

Example 6

Line Comment
00001 The %let statement attempts to define a

macro variable using the name of a read-
only automatic macro.

Explanation

&sysdate9 is set by the system and is read only. The %let
statement follows the standard write logic and the error message is
given.

NOTE: Do not give your variables the same name as read-only
automatic variables!

Before Execution During
Execution

After
Execution

Automatic Symbol
Table

Automatic
Symbol Table

Automatic
Symbol
Table

Sysdate9 = 04MAR2003 Sysdate9 =
04MAR2003

Sysdate9 =
04MAR2003

Global Symbol Table Global Symbol
Table

Global
Symbol
Table

Example 7

Line Comment
00001 The %put statement tests the value of &syslast, a

read-write automatic macro variable, before the
bundle executes.

00003 The keyword parameter defines a macro with the
same name as the automatic macro.

00004 The %put statement tests the value of &syslast
inside the macro bundle.

00009 The %put statement tests the value of &syslast
after the macro bundle has finished executing.

Explanation

&syslast is set by the system but is a read-write macro variable. The
parameter to the bundle has the same name. The read sequence is
the same as that discussed: the most local table is read first with
the global and automatic tables read last. The difference in this
example is that the value of the automatic variable is overwritten.

Before Execution During
Execution

After Execution

Automatic Symbol
Table

Automatic
Symbol Table

Automatic
Symbol Table

Syslast =
work.demograf

Syslast =
work.whatever

Syslast =
work.whatever

Global Symbol Table Global
Symbol Table

Global Symbol
Table

Nested Macros

A nested macro refers to a macro invoked within another macro.
Nested macros allow increased flexibility and control over program
flow.

There are two basic structures for creating nested macros. In the
first technique, one macro is completely defined within a second
macro.

Such a structure will work, but is inefficient. The inner macros are
stored as text instead of being compiled. Each time the outer macro
executes the inner macros are compiled.

A more efficient technique is to define each macro separately and
then invoke the compiled macros:

Because all the macros are defined separately, they all compile.
Here are the referencing environments:

When the outer macro, both, is executing, the referencing
environment is:

• The symbol table local to both plus the global table.

When the middle macro, sortit, is executing, the referencing
environment is:

• The symbol table local to sortit, the symbol table local to
both, plus the global table.

When the inner macro, printit, is executing, the referencing
environment is:

• The symbol table local to printit, the symbol table local to
sortit, the symbol table local to both, plus the global table.

Note that as a macro's execution terminates, the symbol tables are
deleted and the referencing environment is reduced again.

Controlling the Placement of Macro Variables

So far, we have seen default rules for placement of macro variables
into symbol tables. These rules help the programmer determine the
value passed to the program. Often the default rules permit efficient
coding possibilities.

In contrast, there are times when the default rules for placement will
work against the goals of the programmer.

A macro variable might go global and replace a value needed for
reference in later portions of the program.

Conversely, the programmer might wish to confine a macro variable
to a local symbol table. This strategy would help minimize the size
of the global table over the course of the SAS session. Local tables
are destroyed after the macro finishes executing.

Restricting as many macro variables to the local tables as possible
helps increase efficiency in the SAS session.

This section examines situations where the default rules for
placement of macro variables are at odds with programming goals.

The programmer seeks to keep a macro variable in the local table
where otherwise it would go to the global table. The reverse case
can also be true: the macro variable should be written to the global
table but would be written locally by default.

Directing a Macro Variable to the Global Table

Sometimes a variable will be made local when the programmer
seeks to place it in the GST. To allow its value to be used in another
step, consider the following code:

Line Comment
00002 By default, the %let statement assigns the macro

variable status to the most local table. The macro
variable is unavailable during the execution of
%printit.

The Log window shows the reason the program fails to print and
create the correct title.

How might this programming objective be realized?

Line Comment
00001 The %global statement directs the creation of a

macro variable (in this case status) in the global
table. The value of the variable is null.

00004 The %let statement inside %subset follows the
default rules. The GST receives the value for
status, just as the programmer had intended.

Directing a Macro Variable to the Local Table

The programmer may also want a macro variable to be written to
the local symbol table.

This step would assure that a value in the global symbol table would
not be overwritten.

Also, the global table would not become cluttered with macro
variables used on a one-time basis.

Line Comment
00001 The %let statement in open code creates the

macro variable gender in the GST with value F.
00006 The %let statement replaces the GST value of

gender with M. This value is what the programmer
wanted for the %genderM macro bundle.

00020 The &gender resolves to M, not F as the
programmer had wanted.

The default rules have worked against the goals of the program.

The global macro variable gender was given a new value. To
assure that the value of a macro variable is written to the local table,
include syntax as shown.

Line Comment
00006 The %local statement creates a macro variable

gender in the symbol table local to %genderM.
The value of gender is null.

00007 The default placement rules write the value to the
local symbol table. The macro variable gender in
the GST remains F.

Overview

This module looks at how the Data Step can create macro
variables, often out of a data set variable. The Call Symput routine
is used to create a macro variable from within the data step.

In addition, this module looks at the Symget function for bringing a
macro variable into the Data Step.

Call Symput Routine

Of all the macro syntax options, Call Symput is one of the most
important and most useful. With Call Symput, we have another way
of creating a macro variable and giving it a value, this time during
data step execution.

The syntax for call symput is:

 Call symput (macro variable name, macro value);

Note:

• Call Symput is used exclusively in the Data Step.

• Call symput works at data step execution time (not
compile time).

• The macro variable is not available until the data step
creating it completes execution (i.e., until after the run
statement).

Another issue to be aware is if the arguments are in quotes or not.
Briefly, any argument enclosed in quotes is taken as the literal
name or value. Any argument not in quotes is treated as a variable
and the argument is the value of that variable.

Several examples follow illustrating this last point.

Example 1

Line Comment
00002 Both arguments are in quotes. Argument one

creates a macro variable newmacro with the value
hello.

Example 2

Line Comment
00003 First argument unquoted and second argument

quoted. Argument one references the data set
variable ‘x’, which has the value of ‘mvar’.
Argument one creates a macro variable mvar with
the value greetings.

Example 3

Line Comment
00004 Neither argument is in quotes. Arguments one

and two reference data set variables ‘x’ and ‘y’
respectively. Both data set variables have values.
Argument one creates a macro variable mvar with
the value Monday.

Example 4

Line Comment
00003 Only the first argument is in quotes. Argument two

references a data set variable ‘y’ with value
‘Monday’. Argument one creates a macro variable
‘x’ with the value Monday.

These are the four variations in the Call Symput routine.

Now note the timing of creating the macro variable with Call
Symput.

Line Comment
00004 The %put inside the Data Step will not resolve

since the macro variable has not been created.
00007 The %put after the Data Step will resolve.

Using the Call Symput Routine

Application of the Call Symput routine displays its programming
power.

To illustrate, let’s create macro variables and values for frequencies
of distinct values in a data set.

Line Comment
00011 Each loop of the incoming SAS data set

work.stats creates a new macro. The macro name

is determined by the value in the status variable.
The macro value is determined by the value in the
count variable.

Analyze the following additional programs to see the power of the
Call Symput routine.

Example 1:

Create output as shown. It requires both a string and numeric value
reflecting the average salary of the data set.

Format the string to use in a title statement.

Use the numeric value in a Where statement to subset the top half
earners into a new data set.

Line Comment
00001-00004 Proc Means is used to calculate the

mean of the variable salary. An output
data set is created (work.summary) with
a variable (meansal) that is the mean of
salary.

00006-00010 The data step is used to read in the data
set created by Proc Means. Call symput
is used to create macro variables
meansal and avgsal.

00012 Macro variable avgsal is used in Title
statement.

00016 Macro variable meansal is used in
where clause to subset data.

Example 2:

Create macro variables to show average age by gender values.
Show one average age for males, another for females.

Line Comment
00001-00003 The data set saved.demogius is sorted by

gender.
00006-00012 Proc Means calculates the mean age for

each gender. An output data set is created
(work.agestats) with two observations; the
first with the mean age for Females and
the second with the mean age for Males.

00014-
00017

The data step reads in the data set
containing the mean age values. Call
symput is used to create a macro variable.
The name of the macro variable is given by
the value of the gender variable. The
value of the macro variable is given by the
value of the variable mean. Because there
are two observations in work.agestats, two
macro variables are created, one for
Females and the second for Males.

00019-
00020

%put is used to write the value of the
macro variables to the Log

Example 3:

The idea is to archive observations more than 30 days old. This
example could be adapted to any dynamic file (say one under
FSEDIT control) where it was important to move old observations
into some archive or backup file.

Line Comment
00001-00011 Create original data set.
00013-00016 Create work.oldrecs with observations

more than 30 days old.
00018-
00022

Use data set option NOBS to create
variable NUMOBS. The value of NUMOBS
is the number of observations in data set
work.oldrecs. Call symput is used to
create a macro variable (append) with the
number of observations in the data set
work.oldrecs.

00024-
00030

Macro bundle archive is created. If the
value of the append macro is not zero
(therefore there are observations in the
work.oldrecs data set) the Proc Append
code is generated and executed.
Otherwise the Proc Append code is not
generated and executed.

Example 4:

Subset a data set so that each distinct value of a variable is written
to a new data set bearing the value name.

Line Comment
00004-00006 Use Proc Freq to create a data set

containing all unique values of variable
defined by &byvar.

00009-00014 Create a series of macro variables called
mvar1, mvar2, etc. The values of these
macros are given by the value of the
macro &byvar. The macro variable
Numobs that is created has a value equal
to the number of unique values of &byvar.

00017-
00021

Use a %do loop to create the data set
names in the data statement.

00023 Create macro variable else and set its
value to null

00024-
00028

Use a %do loop to generate a series of if,
else if statements. Based on the value of
&byvar the observation is written to the
appropriate data set.

Example 5:

Let us assume that the programmer wants a title statement to spell
out the results determined from data set summarization.

For example, if there are more males in the population than
females, the title should read, “Males outnumber Females”. If the
reverse is true, the title should read, “Females outnumber Males”.
How can the programmer tell SAS which title to select?

Line Comment
00001-00005 The %macro - %mend bundle males

supplies the title to use if males outnumber
females. If so, the data set is sorted in
descending order to show the males at the
top. The second title statement will show
the actual values (derived below).

00007-00011 The %macro - %mend bundle females
supplies the title to use if females
outnumber males. If so, the data set is
sorted in ascending order to show the
females at the top. The second title
statement will show the actual values
(derived below).

00014 The %global statement creates a slot for
the order macro. The value is supplied
when the macro %male or %female is
invoked conditionally below.

00016 Because titles are used, all previously
existing titles are removed.

00022-00025 The sum statements F+1 and M+1 count
the number of observations read into the
Data Step.

00027-00029 The Call Symput routines create macro
variables F and M at then end of the data
step execution.

00033-00035 The %if…%then condition invokes either
%males or %females based on values of
the macro variables. At this point the title
statements are ready and the Global
Symbol Table holds a value of either
descending or <null> for the macro
variable order.

00039 The order macro variable resolves from the
Global Symbol Table.

Frequently Asked Questions About Call Symput

(a) To which symbol table does the macro variable belong?

Most macro variables created by the use of the Call Symput routine
are placed in the global table. However, the variable will be placed
in the nearest symbol table in the current referencing environment
of the data step, providing that symbol table is not empty. If it is
empty, it will be placed in the next higher symbol table, providing it
is not empty and so on.

(b) When is the macro variable available for use?

The most common mistake with the use of the Call Symput routine
is to forget that the macro variable is only available after the data
step completes execution!

(c) How does the Call Symput format character values?

The default format is $w. where w is the width of the variable.
Hence trailing blanks may also be transferred. Avoid this by the use
of the trim function with the second argument:

 call symput('mvar1', trim(datavar));

(d) How does Call SYMPUT format numeric values?

The default format is BEST12. with the number being right justified.
You may need to use the left and put functions to get your desired
result:

 call symput('mvar1', left(put(datavar, 3.));

Symget Function

The purpose of the Symget function is to pass values from a symbol
table in the current referencing environment to the data step
variable in the program data vector:

 Symbol Table

mvar1 Value1
mvar2 Value2

Program Data Vector

VarA VarB VarC VarD VarE
 Value2

Note several important features about the Symget function:

• It is used exclusively in the data step.

• It works at data step execution time (not compile time).

• Symget always retrieves a character variable.

• The data step variable created by symget is a character

string with a default length of 200.

The syntax for the symget function is;

 Variable=symget(argument);

Three types of arguments are accepted by symget:

• Name of a macro variable in single quotes.

• A data step character variable whose value is the name

of a macro variable.

• A data step character expression.

Use of the Symget function is quite versatile.

Line Comment
00007 The Symget function used in a

where option
00008 The Symget function used in a

conditional assignment

In contrast, consider the following attempt to use the Symget
function.

Warning: This program contains syntax errors!

Line Comment
00004 The Symget function is incorrectly used to

name the data set (which is done at compile
time).

00009,
00011

The Symget function incorrectly used outside
the Data Step.

The Log window shows several problems.

How might the problem in the above syntax be solved?

Line Comment
00004, 00009,
00011

Unlike the Symget function, invoking a
macro variable value using &value does
not depend on the Data Step nor on
execute time.

Dynamic Change to the Macro Variable Name

The most common use of the Symget function is to make dynamic
changes to the macro variable name.

Line Comment
00001-
00003

The three %let statement created sequentially
named macro variables.

00006-
00009

The do…to; …… end; syntax provides the
numbered portion of the macro variable
names.

The distinction between the two syntax options of the Symget
function is in the use of quotes!

Placing the first argument in quotes indicates a literal; the string
inside the quotes is the macro variable name.

When the first argument is not in quotes, it indicates a data set
variable; the value of the data set variable supplies the name of the
macro variable.

Creation of Numeric Variables

Another point to note is that the Symget function creates a macro
that is a character string. What are the implications of this?

Consider the following syntax that appears to be quite similar. The
syntax uses the Input function to convert a character variable to a
numeric variable.

Line Comment
00020-
00023

The derived variables cost1 to cost4 seem to
follow the same syntax. They do not. Explore
the differences in the Input statements
below.

Why these differences in results?

Remember that the Input function uses a character value as the first
argument. Both Symget and ‘20’ provide the correct variable type,
and thus the correct justification (to the left). These two examples
work as predicted.

In contrast, &scale and 20 are numeric values. The Log window
states that numeric values have been converted to character.
However, the automatic conversion used the Best12. format. As a
result, the numbers were converted to strings as “ 20”. What
part of the string contributed to the values of cost1 and cost3?
Answer: the first two (blank) spaces. As a result, the values for
cost1 and cost3 are missing.

Remember the result from the Symget function is a character string
of default length 200. It will be left justified and therefore works as a
literal string.

